L aboratory Exercise 6

Adders, Subtractors, and Multipliers

The purpose of this exercise is to examine arithmetic circuits that add, subtract, and multiply numbers. Each
type of circuit will be implemented in two ways: first by writing Verilog code that describes the required function-
ality, and second by making use of predefined subcircuits from Altera’slibrary of parameterized modules (LPMS).
The results produced for various implementations will be compared, both in terms of the circuit structure and its
speed of operation.

Part |

Consider again the four-bit ripple-carry adder circuit that was used in lab exercise 2; a diagram of this circuit is
reproduced in Figure 1a. You are to create an 8-bit version of the adder and include it in the circuit shown in
Figure 1b. Your circuit should be designed to support signed numbers in 2’'s-complement form, and the Overflow
output should be set to 1 whenever the sum produced by the adder does not provide the correct signed value.
Perform the steps shown below.

by a3 ¢, b, @, ¢, by ay ¢, b g Cip
i i i t 44
FA FA FA FA
K ! ! !
Cout S3 52 51 So

a) Four-bit ripple-carry adder circuit

l,s

8 8
Enable; E R R E Enable,
Clock > Q Qe I
A B
\ V
—{Q D Cout + Cin 0
<4 \
8
R
> Q
Overflow S

b) Eight-bit registered adder circuit

Figure 1. An 8-hit signed adder with registered inputs and outputs.

1. Makeanew Quartus |l project and write Verilog code that describes the circuit in Figure 16. Use the circuit
structure in Figure 1a to describe your adder.

2. Include the required input and output portsin your project to implement the adder circuit on the DE1 board.
Connect the inputs A and B to two registers and connect both registers to switches SW;_y. Use KEY, as
an active-low asynchronous reset input, KEY; asamanual clock input, KEY, and KEY;3 as the enable signal
for input registers. Display A and B onthered LEDR;_ lights and the green LEDG;_ lights respectively.
The overflow output should be displayed on thered LEDRg light. The hexadecimal value of S should appear
on HEX1-0.

3. Compile your code and use timing simulation to verify the correct operation of the circuit. Once the sim-
ulation works properly, download the circuit onto the DE1 board and test it by using different values of A
and B. Be sureto check for proper functionality of the Overflow output.

4. Open the Quartus I Compilation Report and examine the results reported by the Timing Analyzer. What is
the maximum operating frequency, fmax, of your circuit? What is the longest path in the circuit in terms of
delay?

Part 11

Modify your circuit from Part | so that it can perform both addition and subtraction of eight-bit numbers. Use
switch SWy to specify whether addition or subtraction should be performed. Connect the other switches, lights,
and displays as described for Part 1.

1. Simulate your adder/subtractor circuit to show that it functions properly, and then download it onto the DE1
board and test it by using different switch settings.

2. Open the Quartus || Compilation Report and examine the results reported by the Timing Analyzer. What is
the fmax of your circuit? What is the longest path in the circuit in terms of delay?

Part [11

Repeat Part | using the predefined adder circuit called Ipm_add_sub, instead of your ripple-carry adder structure
from Figure 1. The Ipm_add_sub module can be found in Altera’s library of parameterized modules (LPMs),
which is provided as part of the Quartus Il system. The procedure for using these predefined modules in Quartus
Il projects is described in the tutorial Using Library Modules in Verilog Designs, which is available on the DE1
System CD and in the University Program section of Altera’s web site.

1. Configure the Ipm_add_sub module so that it performs only addition, to make the functionality comparable
to Part |. Store your configuration of the Ipm_add_sub module in the file Ipm_add8.v. After instantiating this
module in your Verilog code, compile the project and use the Quartus |1 Chip Planner tool to examine some
of the details of the implemented circuit.

One way to examine the adder subcircuit using the Chip Planner tool isillustrated in Figure 2. In the Quartus
Il Project Navigator window right-click on the part of your circuit hierarchy that represents the Ipm_add8
subcircuit, and select the command Locate > Locate in Chip Planner. This opens the Chip Planner
window shown in Figure 3. The logic elements in the Cyclone Il FPGA that are used to implement the
adder are highlighted in blue in the Chip Planner tool. Position your mouse pointer over any of these logic
elements and double-click to open the Resource Property Editor window displayed in Figure 4. In the box
labeled Node name you can select any of the nine logic elements that implement the adder module. The
Resource Property Editor allows you to examine the contents of alogic element and to see how one logic
element is connected others.

Project Mawigakor ———————————— a x
Entity

Cyclone [1: EPZC20F434C7

E----gbc part3

...... abe regrU_g

...... aba regrl_B

------ abe regr:U_Overflow

regnl_S
Ipm

Setkings...

hex7seq.digit_0

Set as Top-Level Entity

[hex7zeq:digit_1

Locate in Assignment Editor
Locate in Pin Planner
Locate in Timing Closure Floorplan

MegaWizard Plug-In Manager

Create Mew LogicLock Region
Export Assignments. .. Locake in
< _I Lacate in Technology Map Viewer

‘ & Set as Design Partition Locate in RTL Viewer

Expand all Locate in Design File
Shatly Print Hierarchy
Moduls [Frogiess 7 [Time pying al Design Files
Copy
Properties

Open in Main Window
w Enable Docking
Close

Figure 2. Locating the eight-bit adder in the Chip Planner tool.

5 |- Ui MLaboratory_Exercises: i ce_files/E foms/partd, Verilop/parid - partd - [Chip Planner
Fie Edt Vew Took Window
Device: EP2C20F43CT

Figure 3. The highlighted logic elements for the eight-bit adder.

Using the tools described above, and referencing the Data Sheet information for the Cyclone |l FPGA,
describe the eight-bit adder circuit implemented with the Ipm_add_sub module.

&
o
&
o
=
v
«
Cd
@
1
i
&

-
Sum Equation U3ICE0ESECEID
| Cairy Faquation [T Smmm—

Figure 4. Examining detailsin alogic element using the Resource Property Editor.

2. Open the Quartus Il Compilation Report and and compare the fmax of your adder circuit with the one
designed in Part |. Discuss any differences in performance that are observed.

Part IV

Repeat Part 11 using the predefined adder circuit called Ipm_add_sub, instead of your adder-subtractor circuit based
on Figure 1.

Comment briefly on the circuit structure obtained using the LPM module, and compare the fmax of thiscircuit
to the one from Part |1. Describe how the |pm_add_sub module implements the Overflow signal.

PartV

Figure 5a gives an example of the traditional paper-and-pencil multiplication P = A x B, where A = 12 and
B = 11. We need to add two summands that are shifted versions of A to form the product P = 132. Part b of the
figure shows the same exampl e using four-bit binary numbers. Since each digit in B iseither 1 or 0, the summands
are either shifted versions of A or 0000. Figure 5¢ shows how each summand can be formed by using the Boolean
AND operation of A with the appropriate bitin B.

1100
12 x1011
x11 1100
12 1100
12 0000
132 1100
10000100
a) Decimal b) Binary

a; a, a, a
x by by by by

aghy a,by a;by agh,
agh, ab, a;b, agh,
agh, ab, a;b, agh,
agh; ayb; a;b; aghs

P7; Pg Ps5 Py P3 Ps Pq Po

¢) Implementation

Figure 5. Multiplication of binary numbers.

A four-bit circuit that implements P = A x B isillustrated in Figure 6. Because of itsregular structure, thistype
of multiplier circuit isusually called an array multiplier. The shaded areas in the circuit correspond to the shaded
columnsin Figure 5¢. In each row of the multiplier AND gates are used to produce the summands, and full adder
modules are used to generate the required sums.

pP7

a3 a a3 a 8 a

l@ ltj l@ "
by
0
* \ \ \
b a b a b a b a
Cy FA Cil Cy FA Cilw= Cy FA Cijl«—|C, FA C; 0
S S S S
ag a; a; 8y
b,
\ \ \ \
b a b a b a b a
Cy FA Cil= Cy FA Cil= Cy FA C; Cy FA Cil=— 0
S S S S
ag a, a; Eh)
bs
\ \ \ \
b a b a b a b a
C, FA Cj C, FA Cj C, FA C; Co FA Cijl«———0
S S S S
l l i i | b
Pg Ps Py P3 Py Py Po

Figure 6. An array multiplier circuit.

Use the following steps to implement the array multiplier circuit:

1
2
3.
4

. Createanew Quartus || project which will be used to implement the desired circuit on the Altera DE1 board.

. Generate the required Verilog file, include it in your project, and compile the circuit.

Use functional simulation to verify that your code is correct.

. Augment your design to use switches SW~_, to represent the number A and switches STW;_ to represent

B. The hexadecimal values of A and B are to be displayed on the 7-segment displays HEX3 and HEX2,
respectively. Theresult P = A x B isto be displayed on HEX1 and HEXO.

Assign the pins on the FPGA to connect to the switches and 7-segment displays, as indicated in the User
Manual for the DE1 board.

Recompile the circuit and download it into the FPGA chip.

Test the functionality of your design by toggling the switches and observing the 7-segment displays.

Part VI

Extend your multiplier to multiply 8-bit numbers and produce a 16-bit product. Theresult P = A x B istobe
displayed on HEX3—0. Add registersto your circuit to store the values of A, B, and the product P, using asimilar
structure as shown for the registered adder in Figure 1. Connect switches, lights, and pushbuttons as described for
Part 1.

After successfully compiling and testing your multiplier circuit, examine the results produced by the Quartus
Il Timing Analyzer to determine the fmax of your circuit. What is the longest path in terms of delay between
registers?

Part VII

Change your Verilog code to implement the 8 x 8 multiplier by using the Ipm_mult module from the library of
parameterized modules in the Quartus 11 system. Complete the design steps above. Compare the results in terms
of the number of logic elements (LES) needed and the circuit fmax.

Part VIII

It many applications of digital circuitsit is useful to be able to perform some number of multiplications and then
produce a summation of the results. For this part of the exercise you are to design a circuit that performs the
calculation

S=(AxB)+(CxD)

Theinputs A, B, C, and D are eight-bit unsigned numbers, and S provides a 16-bit result. Your circuit should
also provide a carry-out signal, C,,:. All of the inputs and outputs of the circuit should be registered, similar to
the structure shown in Figure 1b.

1. Createanew Quartus|| project which will be used to implement the desired circuit on the Altera DE1 board.
Use the |pm.mult and Ipm_add_sub modules to realize the multipliers and adders in your design.

2. Connect the inputs A, B, C, and D to switches S\W;_,. Use switch SWg to select between these two sets
of inputs: A, B or C, D. Also, use the pushbuttons KEY; and KEY3 as write enable (WE) inputs for A, C
and B, D respectively. Push the buttons to set WE signals to 0, which should allow data to be loaded into
the input registers when an active clock edge occurs, while setting WE signals to 1 should prevent loading
of these registers.

3. UseKEY) as an active-low asynchronous reset input, and use KEY; asamanual clock input.

4. Display the binary value of either A or C, as selected by S\s, onred LEDR;_ and display either B or D
on LEDG;_,. The sum S should be shown on HEX3-0, and the C,,,,; signal should appear on LEDRg.

5. Compile your code and use either functional or timing simulation to verify that your circuit works properly.
Then download the circuit onto the DE1 board and test its operation.

6. It is often necessary to ensure that a digital circuit is able to meet certain speed requirements, such as a
particular frequency of asignal applied to a clock input. Such requirements are provided to a CAD system
in the form of timing constraints. The procedure for using timing constraints in the Quartus I CAD system
is described in the tutoria Timing Considerations with Verilog-Based Designs, which is available on the
DE1 System CD and in the University Program section of Altera’'s web site.

For this exercise we are using a manual clock that is applied by a pushbutton switch, so no realistic timing
requirements exist. But to demonstrate the design issues involved, assume that your circuit is required to
operate with a clock frequency of 220 MHz. Enter this frequency as a timing constraint in the Quartus
Il software, and recompile your project. The Timing Analyzer should report that it is unable to meet the
timing requirements due to the lengths of various register-to-register pathsin the circuit. Examine the timing
analysis report and describe briefly the timing violations observed.

7. One way to increase the speed of operation of a given circuit is to insert registers into the circuit in a way
that shortens the lengths of its longest paths. This technique is referred to as pipelining a circuit, and the
inserted registers are often called pipeline registers. Insert pipeline registers into your design between the
multipliers and the adder. Recompile your project and discuss the results obtained.

Part I X

The Quartus |1 software includes a predesigned module called altmult_add that can perform calculations of the
form S = (A x B) + (C' x D). Repesat Part VIII using this module instead of the Ipm_mult and Ipm_add_sub
modules. Test your circuit using both simulation and by downloading the circuit onto the DE1 board.

Briefly describe how the implementation of your circuit differs when using the altmult_add module. Examine
its performance both with and without the pipeline registers discussed in Part VIII.

Copyright (©2006 Altera Corporation.

